Scientific References


Human milk oligosaccharides in General

Bienenstock, J., et al. (2013). Fucosylated but not sialylated milk oligosaccharides diminish colon motor contractions. PLOS ONE, 8.

Bode, L. (2012). Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology, 22: 1147-62.

Bode, L., et al. (2012). Structure-function relationship of human milk oligosaccharides. Adv. Nutr., 3: 383-91.

Bode, L. (2006). Recent advances on structure, metabolism, and function of human milk oligosaccharides. J. Nutr., 136: 2127-2130.

Boehm, G., et al. (2007). Oligosaccharides from milk. J. Nutr., 137:847-9.

Brand Miller, J. (1999). Human milk oligosaccharides: 130 reasons to breast-feed. British J. Nutrition, 82: 333-35.

Bruggencate, S., et al. (2014). Functional role and mechanisms of sialyllactose and other sialylated milk oligosaccharides.. Nutrition Reviews: Epub.

Castanys-Munoz, E., et al. (2013). 2’-fucosyllactose: an abundant, genetically determined soluble glycan present in human milk. Nutrition Reviews: Epub.

Coppa, G. V., et al. (1999). Oligosaccharides in human milk during different phases of lactation. Acta. Paediatr. Suppl., 88: 89-94.

Hennet, T., et al. (2014). Decoding breast milk oligosaccharides. Swiss Med. Wkly., 19.

Holmlund, U., et al. (2010). Maternal country of origin, breast milk characteristics and potential influences on immunity in offspring. Clinical and Experimental Immunology, 162: 500-9.

Jantscher-Krenn, E., et al. (2012). Human milk oligosaccharides and their potential benefits for the breast-fed neonate. Minerva Pediatr., 64: 83-99.

Kunz, C. (2012). Historical aspects of human milk oligosaccharides. Adv. Nutr. 3: 430-9.

Kunz, C., et al. (2006). Health promoting aspects of milk oligosaccharides. International Dairy Journal, 16: 1341-1346.

Marx, C., et al. (2014). Human milk oligosaccharide composition differs between donor milk and mother’s own milk in NICU. Journal of Human Lactation, 30: 54-61.

Morrow, A. L., et al. (2011). Fucosyltransferase 2 non-secretor and low secretor status predicts severe outcomes in premature infants. The Journal of Pediatrics, 158: 745-51.

Nakhla, T., et al. (1999). Neutral oligosaccharide content of preterm human milk. British Journal of Nutrition, 82: 361-7.

Newburg, D. S. (2013). Glycobiology of human milk. Biochemistry, 78: 771-85.

Obermeier, S., et al. (1999). Secretion of 13C-labelled oligosaccharides into human milk and infant’s urine after an oral [13C]galactose load. Isotopes Environ Health Stud., 35: 119-25.

Oriquat, G. A. (2011). Soluble CD14, sialic acid and L-Fucose in breast milk and their role in increasing the immunity of breast-fed infants. American Journal of Biochemistry and Biotechnology, 7: 21-28.

Rudloff, S., et al. (2012). Milk oligosaccharides and metabolism in infants. Adv. Nutr., 3: 398-405.

Sabharwal, H., et al. (1991). Sialylated oligosaccharides in human milk and feces of preterm, full-term, and weaning infants. Journal of Pediatric Gastroenterology and Nutrition, 12: 480-84.

Schauer, R. (2004). Sialic acids: fascinating sugars in higher animals and man. Zoology, 107: 49-64.

Thurl, S., et al. (2010). Variation of human milk oligosaccharides in relation to milk groups and lactational periods. British J. Nutr., 104: 1261-71.

Urashima, T., et al. (2012). The predominance of type I oligosaccharides is a feature specific to human breast milk. Adv. Nutr., 3: 473-82.

Urashima, T., et al. (2012). Evolution of milk oligosaccharides and lactose: a hypothesis. Animal., 6: 369-74.

Vos, A. P. (2007). Dietary supplementation of neutral and acidic oligosaccharides enhances Th1-dependent vaccination responses in mice. Pediatr. Allergy Immunol., 18: 304-12.


Prebiotic effects of Human Milk Oligosaccharides

Bode, L. (2009). Human milk oligosaccharides: prebiotics and beyond. Nutrition Reviews, 67: 183-191.

Coppa, G. V., et al. (2006). Prebiotics in human milk : a review. Dig. Liver. Dis., 38: 291-4.

Coppa, G. V., et al. (2004). The first prebiotics in humans: human milk oligosaccharides. J. Clin. Gastroenterol., 38: 80-3.

Erney, R. M., et al. (2000). Variability of human milk neutral oligosaccharides in a diverse population. Journal of Pediatric Gastroenterology and Nutrition, 30: 181-92.

Fuhrer, A., et al. (2010). Milk sialyllactose influences colitis in mice through selective intestinal bacterial colonization. J. Exp. Med., 207: 2843-54.

Gnoth, M. J., et al. (2000). Human milk oligosaccharides are minimally digested in vitro. J. Nutr., 130: 3014-20.

Harmsen, H. J., et al. (2000). Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J. Pediatr. Gastroenterol. Nutr., 30: 61-7.

Jeong, K., et al. (2012). Human milk oligosaccharides: the novel modulator of intestinal microbiota. BMB Reports, 45.

Kai, H., et al. (1990). Anti-allergic effect of N-acetylneuraminic acid in guinea-pigs. J. Pharm. Pharmacol., 42: 773-77.

Kurakevich, E., et al. (2013). Milk oligosaccharide sialyl(α2,3)lactose activates intestinal CD11c+ cells through TLR4. PNAS, 110: 17444-49.

Li, M., et al. (2012). Microbial Composition and in vitro fermentation patterns of human milk oligosaccharides and prebiotics differ between formula-fed and sow-reared piglets. The Journal of Nutrition, 142: 681-89.

Newburg, D. S. (2000). Oligosaccharides in human milk and bacterial colonization. J. Pediatr. Gastroenterol. Nutr., 30 Suppl 2: 8-17.

Moro, G., et al. (2006). A mixture of prebiotic oligosaccharides reduces the incidence of atopic dermatitis during the first six months of age. Arch. Dis. Child., 91: 814-19.

Satoh, T., et al. (2013). In vitro comparative evaluation of the impact of lacto-N-biose I, a mojor building block of human milk oligosaccharides, on the fecal microbiota of infants. Anaerobe, 19: 50-7.

Yoshioka, H., et al. (1983). Development and differences of intestinal flora in the neonatal period in breast-fed and bottle-fed infants. Pediatrics, 72: 317-21.

Yu, Z. T., et al. (2013). Utilization of major fucosylated and sialylated human milk oligosaccharides by isolated human gut microbes. Glycobiology, 23: 1281-92.

Yu, Z. T., et al. (2012). The principal fucosylated oligosaccharides of human milk exhibit prebiotic properties on cultured infant micobiota. Glycobiology, 23: 169-77.

Weiss, G. A., et al. (2012). The role of milk sialyllactose in intestinal bacterial colonization. Adv. Nutr., 3: 483-88.

Yu, Z. T., et al. (2013). The principal fucosylated oligosaccharides of human milk exhibit prebiotic properties on cultured infant microbiota. Glycobiology, 23: 169-77.

Zivkovic, A. M., et al. (2010). Human milk glycobiome and its impact on the infant gastrointestinal microbiota. PNAS, 108: 4653-58.


Reduction of Infection Risk by Human Milk Oligosaccharides

Cilieborg, M. (2012). A milk oligosaccharides, 2’-fucosyllactose, may ameliorate necrotizing enterocolitis in preterm pigs.

Coppa, G. V., et al. (2006). Human milk oligosaccharides inhibit the adhesion to Caco-2 cells of diarrheal pathogens: Escherichia coli, Vibrio cholerae, and Salmonella fyris. Pediatr. Res., 59: 377-82.

Crane, J. K., et al. (1994). Oligosaccharides from human milk block binding and activity of the Escherichia coli heat-stable enterotoxin (STa) in T84 intestinal cells. J. Nutr., 124: 2358-64.

Hester, S. N., et al. (2013). Human milk oligosaccharides inhibit rotavirus infectivity in vitro and in acutely infected piglets. British J. Nutr., 110: 1233-42.

Hickey, R. (2012). The role of oligosaccharides from human milk and other sources in prevention of pathogen adhesion. International Dairy Journal, 22: 141-146.

Jantscher-Krenn, E., et al. (2013). The human milk oligosaccharide disialyllacto-N-tetraose prevents necrotising enterocolitis in neonatal rats. Gut, 61: 1417-25.

Jantscher-Krenn, E., et al. (2012). Human milk oligosaccharides reduces Entamoeba histolytica attachment and cytotoxicity in vitro. British Journal of Nutrition, 108: 1839-46.

Kunz, C., et al. (2008). Potential anti-inflamatory and anti-infectious effects of human milk oligosaccharides. Adv. Exp. Med. Biol., 606: 455-65.

Li, M., et al. (2014). Human milk oligosaccharides shorten rotavirus-induced diarrhea and modulate piglet mucosal immunity and colonic microbiota. ISME J.: Epub.

Manthey, C. F., et al. (2014). Human milk oligosaccharides protect against enteropathogenic Eschericia coli attachment in vitro and EPEC colonization in suckling mice. JPGN, 58: 167-70.

Morrow, A. L., et al. (2004). Human milk oligosaccharides are associated with protection against diarrhea in breast-fed infants. J. Pediatr., 145: 297-303.

Morrow, A. L., et al. (2005). Human milk glycans that inhibit pathogen binding protect breast-feeding infants against infectious diarrhea. J. Nutr., 135: 1304-7.

Morrow, A. L., et al. (2004). Human milk oligosaccharides are associated with protection against diarrhea in breast-fed infants. J. Pediatr., 145: 297-303.

Newburg, D. S., et al. (2003). Innate protection conferred by fucosylated oligosaccharides of human milk against diarrhea in breastfed infants. Glycobiology, 14: 253-63.

Newburg, D. S., et al. (2005). Human milk glycans protect infants against enteric pathogens. Annu. Rev. Nutr., 25: 37-58.

Ruiz-Palacios, G. M., et al. (2003). Campylobacter jejuni binds intestinal H(O) antigen (Fuc alpha-1,2Gal beta1,4GlcNAc), and fucosyloligosaccharides of human milk inhibit its binding and infection. J. Biol. Chem., 278: 14112-14120.

Stepans, M. B., et al. (2006). Early consumption of human milk oligosaccharides is inversely related to subsequent risk of respiratory and enteric disease in infants. Breastfeed Med., 1: 207-15.

Weichert, S., et al. (2013). Bioengineered 2’-fucosyllactose and 3-fucosyllactose inhibit the adhesion of Pseudomonas aeruginosa and enteric pathogens to human intestinal and respiratory cell lines. Nutr. Res., 33: 831-8.


Human Milk Oligosaccharides for Optimal Brain Development

Ducan, P. I., et al. (2009). Sialic acid utilisation and synthesis in the neonatal rat revisited. PLOS One, 11.

Karim, M., et al. (2006). Is sialic acid in milk food for the brain?. CAB Reviews, 18.

Margolis, R. U., et al. (1975). Glycosaminoglycans of brain during development. Biochemistry, 14: 85-88.

Rutishauser, U. (2008). Polysialic acid in the plasticity of the developing and adult vertebrate nervous system. Nature Reviews Neuroscience, 9: 26-35.

Sprenger, N., et al. (2009). Sialic acid feeding aged rats rejuvenates stimulated salivation and colon enteric neuron chemotypes. Glycobiology, 19: 1492-1502.

Sprenger, N., et al. (2012). Sialic acid utilization. Adv. Nutr., 3: 392-97.

Wang, B. (2012). Molecular Mechanism Underlying Sialic Acid as an Essential Nutrient for brain development and cognition. Adv. Nutr., 3: 465-72. Adv. Nutr., 3: 465-72.

Wang, B. (2009). Sialic acid is an essential nutrient for brain development and cognition. Annu. Rev. Nutr., 29: 177-222.

Wang, B. (2007). Dietary sialic acid supplementation improves learning and memory in piglets. Am. J. Clin. Nutr., 85: 561-9.

Wang, B., et al. (2003). The role and potential of sialic acid in human nutrition. European Journal of Clinical Nutrition, 57: 1351-69.

Wang, B., et al. (2003). Brain ganglioside and glycoprotein sialic acid in breastfed compared with formula-fed infants. Am. J. Clin. Nutr., 78: 1024-9.